Article

Biphenalenylidene: The Forgotten

 Bistricyclic Aromatic Ene. A Theoretical Study
Sergey Pogodin, and Israel Agranat

J. Am. Chem. Soc., 2003, 125 (42), 12829-12835•DOI: 10.1021/ja035968k • Publication Date (Web): 26 September 2003

Downloaded from http://pubs.acs.org on March 30, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 2 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

A R T I C L E S
Published on Web 09/26/2003

Biphenalenylidene: The Forgotten Bistricyclic Aromatic Ene. A Theoretical Study

Sergey Pogodin and Israel Agranat*
Contribution from the Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Received May 6, 2003; Revised Manuscript Received August 8, 2003; E-mail: isria@vms.huji.ac.il

Abstract

The Lawesson reagent and $\mathrm{P}_{2} \mathrm{~S}_{5}$ mediated reductive coupling of phenalenone (6) gives LPAH peropyrene (5) in 47% and 54% yields. The mechanism of the reaction involves the formation of phenalenethione (10), Z - and E-1, 1^{\prime}-biphenalenylidene (3), and 9 as intermediates. The electrocyclization reaction of $Z-3$ to 9 , followed by aromatization, gives 5 . The results of an ab initio and DFT study of 3 and $2,2^{\prime}$-biphenalenylidene (12) are reported. E-3 and Z-3 have a diradical character with twist angles of 44.8° and 57.8° (at UB3LYP/6-311G**). ΔE^{\ddagger} Tot $=10.2 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta G^{\ddagger}{ }_{298}=10.6 \mathrm{~kJ} / \mathrm{mol}$ for $E-3 \rightleftharpoons Z-3$ diastereomerization. These unusually low energy barriers are due to the ground-state diradical destabilization and the aromatic stabilization of the transition state TS-3. Triplet $Z-3$ is higher in energy than singlets E-3 and $Z-3$ by 10.4 and $3.1 \mathrm{~kJ} / \mathrm{mol}$. In the concealed non-Kekule 12, singlet 12 is more stable than the triplet by $1.3 \mathrm{~kJ} / \mathrm{mol}$. Singlet 12 is more stable than singlet $E-3$ by $2.0 \mathrm{~kJ} / \mathrm{mol}$, and orthogonal singlet TS-12 is lower in energy than singlet TS-3 by $6.0 \mathrm{~kJ} / \mathrm{mol}$. The energy barriers for the hexatriene-cyclohexadiene electrocyclization $Z-3 \rightarrow 9$ are ΔE^{\ddagger} Tot $=94.8$ and $\Delta G^{\ddagger}{ }_{298}=98.3 \mathrm{~kJ} / \mathrm{mol}$ (at (U)B3LYP/6-31G*). The reaction occurs thermally in a conrotatory mode.

Introduction

The bistricyclic aromatic enes (BAEs) (1) are representatives of the more general class of overcrowded polycyclic aromatic enes (PAEs). ${ }^{1,2}$ These systems are convenient substrates for the study of the ground state conformations and dynamic stereochemistry of overcrowded PAEs. Thermochromic and photochromic BAEs serve as candidates for potential molecular switches, ${ }^{3,4}$ whereas 9 -(9 H -fluoren-9-ylidene)-9H-fluorene (2), the parent BAE, and related BAEs serve as potential starting materials for the preparation of buckybowls. ${ }^{5-9}$ The syntheses of the fullerene fragment diindeno[1,2,3,4-defg: $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-mnop $]$ chrysene from 2 and its $1,1^{\prime}$-dibromo derivative by FVP have been reported. ${ }^{10,11}$ The topic of BAEs has been reviewed. ${ }^{1,2,12,13}$

[^0]
Chart 1

BAEs were perceived as bridged tetraarylethylenes or tetrabenzofulvalenes and were classified into homomerous BAEs $(\mathbf{1}, X=Y)$ and heteromerous BAEs $(\mathbf{1}, X \neq Y) .{ }^{2} 1$-($1 H$-phenalen-1-ylidene)- $1 H$-phenalene (3), a constitutional isomer of $\mathbf{2}$, has eluded the attention of the explorers. ${ }^{14}$ Formally, $\mathbf{3}$ is a BAE, but has a different topology than $\mathbf{1}$. It is composed of two units of 1 H -phenalene (4), known for its unusual chemistry. ${ }^{15-17} \mathrm{BAE}$ 3 may also be regarded as phenalenofulvalene. BAE 3, contrary to 2, can exist as two diastereomers, E-3 and Z-3. Both are
(12) Sandström, J. In The Chemistry of Double-Bonded Functional Groups, Supplement A3, Part 2: Patai, S., Ed.; Wiley: New York, 1997: pp 12531280.
(13) Biedermann, P. U.; Stezowski, J. J.; Agranat, I. In Advances in Theoretically Interesting Molecules; Thummel, R. P., Ed.; JAI Press: Stamford CN, 1998; vol. 4, pp 245-322.
(14) The formation of 7 -(7 H -benz[de]anthracen-7-ylidene)-7H-benz[de]anthracene, a dibenzo derivative of $\mathbf{4}$, has been reported briefly in the literature, but the product has not been characterized: Zinke, A.; Ott, R.; Weinhardt, E. Monatsh. Chem. 1950, 81, 878-886.
(15) Reid D. H. Tetrahedron 1958, 3, 339-352.
(16) Reid, D. H. Quarter. Rev. 1965, 19, 274-302.
(17) Murata, I. In Topics in Nonbenzenoid Aromatic Chemistry; Nozoe, T., Breslow, R., Hafner, K., Itô, S., Murata, I., Eds.; Wiley: Tokio 1973; vol 1, pp 159-190.
J. AM. CHEM. SOC. 2003, 125, 12829-12835 ■ 12829

Chart 2

overcrowded: E-3 has two cove regions, whereas $Z-3$ has a fjord region and a bay region. The overcrowding in Z-3 and $E-3$ leads to out-of-plane deformations and to a variety of conformations, whereas close carbon-carbon nonbonding distances at the fjord region of Z-3 could facilitate an aromatization process, leading to dibenzo $[c d, l m]$ perylene (peropyrene, 5), a large polycyclic aromatic hydrocarbon (LPAH). LPAH 5 was identified as a component of coal tar pitch, ${ }^{18}$ of diesel particulate extract, ${ }^{19}$ and as a product of bituminous coal volatiles pyrolysis. ${ }^{20}$ It was synthesized from $1 H$-phenalen-1-one (phenalenone, 6) by the Clar reaction, a reductive coupling of phenalenonetype polycyclic aromatic ketones, using Zn dust in a melt of NaCl and ZnCl_{2} at $300{ }^{\circ} \mathrm{C} .{ }^{21,22}$ Peropyrene (5) can also be formed from phenalenyl radical (7a), which is reported to undergo σ-dimerization to form its dimer 1, 1^{\prime}-biphenalenyl ($\mathbf{8}$) in an equilibrium reaction. $.^{15,16} \mathrm{At} \leq-25^{\circ} \mathrm{C} 7 \mathrm{a}$ exists only in the dimeric form. ${ }^{23}$ It has also been shown to form a staggered "dimeric pair", with weak or intermediate covalent bonding between two molecules of $\mathbf{7 a} \cdot{ }^{24}$ Dimer $\mathbf{8}$ disproportionates slowly at room temperature and rapidly in boiling benzene, yielding 5 and an unidentified hydroaromatic product. ${ }^{15}$ It has also been mentioned as a possible intermediate in the formation of 5 from 1-(1-hydroxy- 1 H -phenalenyl)- 1 H -phenalen-1-ol under acidic catalysis. ${ }^{15,16}$ The reductive dimerization of phenalenium perchlorate with Zn dust in diethyl ether at $25^{\circ} \mathrm{C}$ via radical 7a yields 5. ${ }^{25}$ Radical 7a can also be generated from 6. ${ }^{15,16}$ Dimer $\mathbf{8}$ has neither been isolated nor characterized and the mechanism of the formation of $\mathbf{5}$ from $\mathbf{8}$ has not been elucidated.

The phenalene system has gained a special status in Novel Aromatic Chemistry. ${ }^{16,17}$ Consider the odd-alternant phenalenyl $D_{3 h}-\mathrm{C}_{13} \mathrm{H}_{9}$ system. Phenalenyl radical $D_{3 h}-\mathrm{C}_{13} \mathrm{H}_{9}{ }^{\circ}$ (7a), phenalenium cation $D_{3 h}-\mathrm{C}_{13} \mathrm{H}_{9}{ }^{+}(\mathbf{7 b})$, and phenalenide anion $D_{3 h^{-}}$ $\mathrm{C}_{13} \mathrm{H}_{9}{ }^{-}(7 \mathbf{c})$ all possess special thermodynamic stability. ${ }^{17}$ This extraordinary picture stems from the Hückel diagram of molecular π-orbitals. The HOMO/LUMO of the odd-alternant species $\mathbf{7 a}, \mathbf{7 b}$, and $\mathbf{7 c}$ is a nonbonding orbital (NBMO), lying above three degenerate bonding orbitals. Phenalenium cation (7b) is a truly closed shell species, ${ }^{26}$ with an empty NBMO, whereas in radical 7a, and anion 7c this orbital is singly and

[^1]doubly occupied, respectively. This is not expected to introduce a significant destabilizing effect. Thus, TREPE values, calculated for 7a-c, are positive and almost identical, indicating similar aromatic stabilization. ${ }^{27}$ The unusual thermodynamic stability of $7 \mathbf{a}$ is noted. ${ }^{16,17}$ The problem of kinetic instability of $7 \mathbf{a}$ due to σ-dimerization to 8 , leading to 5 , was overcome by introducing bulky substituents in 7a. 2,5,8-Tri-tert-butylphenalenyl radical and perchlorophenalenyl radical were synthesized and their X-ray structures were determined. ${ }^{28,29}$

We report here the Lawesson reagent and $\mathrm{P}_{2} \mathrm{~S}_{5}$ mediated reductive coupling of phenalenone (6) leading to peropyrene (5) and the mechanism of the reaction, including the formation of 1 H -phenalene-1-thione $(\mathbf{1 0})$ and of $Z-\mathbf{3}$ and $E-\mathbf{3}$ as intermediates. The results of an ab initio and DFT study of the conformational space of Z-3 and E-3 and related species are presented. Special emphasis is drawn to the electrocyclization of $Z-\mathbf{3}$ in the multistep transformation of $\mathbf{6}$ to $\mathbf{5}$. We note the very low barriers for $E \rightleftharpoons Z$ diastereomerization of $\mathbf{3}$.

Results and Discussion

Synthesis of Peropyrene (5) by Reductive Coupling of Phenalenone (6). We have previously reported an attempted synthesis of $\mathbf{3}^{30}$ by a low-valent titanium-induced reductive carbonyl coupling reaction, a convenient synthetic method for preparation of aromatic and aliphatic enes from carbonyl compounds, referred to in the chemical literature as the McMurry reaction. ${ }^{31-33}$ Treatment of $\mathbf{6}$ with low-valent titanium species generated from TiCl_{4} and LiAlH_{4} did not produce $\mathrm{Z}-\mathbf{3}$ and $E-3$, but gave LPAH 5 in a relatively low yield (15\%). ${ }^{30}$ The possibility of converting 6 into phenalenethione (10), with the subsequent application of Barton's 2-folded extrusion diazo/ thione coupling method ${ }^{34-36}$ with $\mathbf{1 0}$ and 1-diazo- 1 H -phenalene to give 5, was considered. Alternatively, $\mathbf{1 0}$ could be converted to 5 by a reductive coupling with copper.

Treatment of 6 with $\mathrm{P}_{2} \mathrm{~S}_{5}$ in boiling benzene under argon atmosphere for 10 h did not give the expected thione 10, but afforded LPAH 5 in 54\% yield. The reaction of $\mathbf{6}$ with Lawesson reagent under similar conditions for 2.5 h gave LPAH 5 in 47\% yield. Neither $Z-3$ nor $E-3$ were found in the product mixture. To explore the reaction further, ${ }^{1} \mathrm{H}$ NMR spectra were recorded 5,30 , and 60 min from the beginning of the reaction of $\mathbf{6}$ with $\mathrm{P}_{2} \mathrm{~S}_{5}$. In addition to 5 and $\mathbf{6}$, signals ascribed to two unknown compounds I and II were recorded. After 5 min , the reaction mixture contained $70-95 \%$ of Compound I, $0-20 \%$ of $\mathbf{6}$, and small amounts of 5 and Compound II. After 30 min , the reaction mixture contained $30-40 \%$ of Compound II, $15-40 \%$ of 5,
(27) Ilić, P. Trinajstić, N. J. Org. Chem. 1980, 45, 1738-1748.
(28) Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.; Shiomi, D.; Takui, T.; Kubota, M.; Kobayashi, T.; Yakusi, K.; Ouyang, J. J. Am. Chem. Soc. 1999, 121, 1619-1620.
(29) Koutentis, P. A.; Chen, Y.; Cao, Y.; Best, T. P.; Itkis, M. E.; Beer, L.; Oakley, R. T.; Cordes A. W.; Brock, C. P.; Haddon, R. C. J. Am. Chem. Soc. 2001, 123, 3864-3871.
(30) Podogin, S.; Agranat, I. Org. Lett. 1999, 1, 1387-1390.
(31) Mukaiyama, T.; Sato, T.; Hanna, J. Chem. Lett. 1973, 1041-1044.
(32) Tyrlik, S.; Wolochowicz, I. Bull. Soc. Chim. Fr. 1973, 2147-2148.
(33) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure; $5^{\text {th }}$ Ed; Wiley: New York, 2001; pp 15611562.
(34) Reason and Imagination: Reflections on Research in Organic Chemistry: Selected Papers of Derek H. R. Barton; Barton, D. H. R., Ed.; Imperial College Press and World Scientific: Singapore, 1996; vol. 6, p 489.
(35) Barton, D. H. R.; Willis, B. J. J. Chem. Soc., Perkin Trans. 1 1972, 305310.
(36) Barton, D. H. R.; Guziec, F. S.; Shahak, I. J. Chem. Soc., Perkin Trans. 1 1974, 1794-1799.

Scheme 1. Proposed Mechanism of the Reductive Coupling of Phenalenone (6) to Form Peropyrene (5)

$0-30 \%$ of Compound I, but no traces of $\mathbf{6}$. After 60 min , the reaction mixture contained $30-50 \%$ of $\mathbf{5}, 35 \%$ of Compound II, and trace amount of Compound I. The ${ }^{1} \mathrm{H}$ NMR spectrum of the latter sample recorded after a week showed $70-95 \%$ of 5. The UV-vis spectrum of the dark orange solution (Compound I), resulting from the reflux of $\mathbf{6}$ with $\mathrm{P}_{2} \mathrm{~S}_{5}$ in benzene (5 min), demonstrated signals at $470,444,418,394,375,356$, 340,328 , and 315 nm . The ${ }^{1} \mathrm{H}$ NMR spectrum of this orange solution (Compound I) resembled the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$, with a slight shift to a lower field. After evaporating the solvent in a vacuum and dissolving the residue again, the color of the solution changed from dark orange to green. The UV-vis spectra showed a broad band at 647 nm with the intensity rapidly decreasing in time and disappearing after 50 min , whereas the intensities of the characteristic bands belonging to LPAH 5 (438, 409,382 , and 354 nm) were consistently increasing. It was concluded that the orange Compound I is phenalenethione (10). The signal of aliphatic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum of Compound II could be ascribed to $\mathbf{4 , 9}$, or another intermediate product of the phenalenone coupling reaction, leading to 5 . The band at 647 nm in UV-vis spectrum is ascribed to $\mathrm{Z}-\mathbf{3}$ and/or E-3.
The proposed mechanism of the coupling reaction is depicted in Scheme 1. Thione $\mathbf{1 0}$ is formed first. Thiones of aromatic ketones can undergo dimerization, including carbon-carbon bond formation. ${ }^{37,38}$ Thione 10 then undergoes dimerization and desulfurization, via carbene $\mathbf{1 1}$ or, alternatively, via 2,4-bis(1 H -phenalenyliden)-1,3-dithiane, leading to BAE 3. (E) - $\mathbf{3}$ readily isomerizes to $(Z)-\mathbf{3}$ (vide infra), which then undergoes a hexatriene-cyclohexadiene electrocyclization, to give heptacyclic hydrocarbon 9 . Subsequent aromatization of 9 yields 5.

This reaction may be compared with the reductive coupling of 7 H -benz[de]anthracen-7-thione with copper powder in boiling toluene, to give LPAH tetrabenzo $[a, c d, j, l m]$ perylene as the sole reductive dimerization product in 14% yield. ${ }^{39}$ The reductive coupling of $\mathbf{6}$ to $\mathbf{5}$ with $\mathrm{P}_{2} \mathrm{~S}_{5}$ or with Lawesson reagent requires a moderate heating ($80^{\circ} \mathrm{C}$), but does not require high temperatures as the Clar reaction. The depicted mechanism (Scheme 1) differs considerably from the reported transformation of 7a

[^2]via $\mathbf{8}$ into 5. ${ }^{15,16}$ The conditions of the reductive coupling of 6 mediated by Lawesson reagent and by $\mathrm{P}_{2} \mathrm{~S}_{5}$ rule out the formation of $\mathbf{8}$ as an intermediate.

Conformational Space of $\mathbf{1 , 1}^{\prime}$-Biphenalenylidene (3). The conformational space of BAE $\mathbf{3}$ was studied by ab initio HF and MP2 and DFT B3LYP methods. DFT can be successfully used to probe the aromaticity of large molecular systems, in a cost-effective way, using the different energetic, geometrical and magnetic criteria of aromaticity. ${ }^{40}$ Lately, B3LYP hybrid functional was successfully employed to treat BAEs, ${ }^{41}$ LPAHs, ${ }^{42}$ fullerenes, and fulvalenes. ${ }^{43}$ Table S1 and Table S2 give HF, MP2, and B3LYP relative and total energies of BAE 3. Table S3 gives selected geometrical parameters of $\mathbf{3}$. The global minimum of $\mathbf{3}$ is twisted $E-\mathbf{3}\left(\omega=37.5^{\circ}\right)$, with twisted $Z-\mathbf{3}(\omega$ $=38.9^{\circ}$) being less stable by $15.4 \mathrm{~kJ} / \mathrm{mol}$ (at RB3LYP/6-31G*). These twist values are similar to the pure twist of $\mathbf{2}, 34.0^{\circ}{ }^{41}$ Both twisted conformations of $\mathbf{3}$ are slightly overcrowded, having nonbonding distance $\mathrm{C}^{2} \cdots \mathrm{C}^{9^{\prime}}=305.6 \mathrm{pm}(11 \%$ penetration; the van der Waals radii of carbon is $171 \mathrm{pm}^{44}$) and $\mathrm{C}^{9} \cdot$. $\cdot \mathrm{C}^{9^{\prime}}=313.9 \mathrm{pm}$ (8% penetration). The anti-folded $E-\mathbf{3}$ conformation is a local minimum, $27.5 \mathrm{~kJ} / \mathrm{mol}$ less stable than E-3. Syn-folded Z-3, which is 78.1 and $62.7 \mathrm{~kJ} / \mathrm{mol}$ higher than $E-3$ and $Z-3$, respectively, is a transition state. It is overcrowded, with nonbonding distances $\mathrm{H}^{9} \cdots \mathrm{H}^{9^{\prime}}=171.5 \mathrm{pm}(25 \%$ penetration; the van der Waals radii of hydrogen is $115 \mathrm{pm}^{44}$) and C^{9}. $\cdot \cdot \mathrm{C}^{9^{\prime}}=301.7 \mathrm{pm}$ (12% penetration). For comparison, anti-folded and syn-folded 2 are 39.0 and $74.3 \mathrm{~kJ} / \mathrm{mol}$ less stable than twisted 2. ${ }^{41}$ Planar $E-3$ and $Z-3$ are third-order saddle points and are located 104.1 and $147.3 \mathrm{~kJ} / \mathrm{mol}$ above $E-3$, respectively.

Spin unrestricted treatment of $E-3$ and $Z-3$ lowers their relative energies by 3.1 and $10.7 \mathrm{~kJ} / \mathrm{mol}$, respectively, with Z-3 being less stable than $E-3$ by $7.8 \mathrm{~kJ} / \mathrm{mol}$ (at UB3LYP/6-31G*). At UB3LYP/6-311G ${ }^{* *}$, the energy difference is $7.3 \mathrm{~kJ} / \mathrm{mol}$. Both E-3 and Z-3 have a diradical character, ${ }^{45,46}$ which is reflected in higher twist angles as compared to spin restricted geometries: 45.1° and 55.6°, respectively. The transition state for $E \rightleftharpoons Z$ diastereomerization, the orthogonally twisted TS-3 conformation $\left(\omega=88.5^{\circ}\right)$, is located 12.0 and $4.2 \mathrm{~kJ} / \mathrm{mol}$ above $E-3$ and Z-3, respectively (at UB3LYP/6-31G*). Figure 1 shows the relative energies of the important, twisted conformations of 3. Figure 2 shows the three-dimensional views of twisted $E-3$, $Z-\mathbf{3}$, and TS-3. The E, Z-diastereomerization barrier is remarkably low: ΔE^{\ddagger} Tot $=12.0 \mathrm{~kJ} / \mathrm{mol}\left(\mathrm{UB} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}\right)$ and 10.2 $\mathrm{kJ} / \mathrm{mol}\left(\mathrm{UB} 3 \mathrm{LYP} / 6-311 \mathrm{G}^{* *}\right)$. The enthalpy of activation of the reaction $\Delta H^{\ddagger}{ }_{298}=7.4$ and $5.5 \mathrm{~kJ} / \mathrm{mol}$, respectively. Gibbs activation energy $\Delta G^{\ddagger} 298$ is 12.5 and $10.6 \mathrm{~kJ} / \mathrm{mol}$, respectively. For comparison, the experimental ΔG^{\ddagger} for thermal E, Z diastereomerization of disubstituted bifluorenylidenes are in the range of $79.5-104.6 \mathrm{~kJ} / \mathrm{mol}^{2}{ }^{2}$

The unusually low energy barrier for E, Z-diastereomerization of $\mathbf{3}$ is ascribed to a combination of a ground state destabilization of this BAE, possessing a diradical character, high torsion angles and significantly weakened central double bond, and of an

[^3]

Figure 1. DFT relative energies $\left(\Delta E_{\mathrm{Tot}}, \mathrm{kJ} / \mathrm{mol}\right)$ of the twisted conformations of BAE 3 (at UB3LYP/6-311G**; $\Delta E_{\text {Tot }}(E-3)=0$; S: singlet, T: triplet).

E-3

TS-3

Z-3

Figure 2. Three-dimensional representations of twisted $E-3$ and $Z-3$ and of the transition state for E, Z-diastereomerization of $\mathbf{3}$ (singlets, at UB3LYP/ $6-311 \mathrm{G}^{* *}$).
aromatic stabilization of the orthogonally twisted transition state TS-3. The degree of this stabilization could be estimated by a comparison of TS-3 with the analogous transition state for enantiomerization of twisted $\mathbf{2} .^{41}$ TS-3 is more stable than TS-2 by $101.3 \mathrm{~kJ} / \mathrm{mol}$ (at UB3LYP/6-31G*). Hence, the experimental E, Z-diastereomerization barriers in derivatives of 2 are substantially higher (vide supra). The results of HF and MP2 methods are in agreement with the results of DFT. At UHF/6$31 \mathrm{G}^{*}, E-3\left(\omega=61.5^{\circ}\right)$ is more stable than $Z-3\left(\omega=66.4^{\circ}\right)$ by $0.4 \mathrm{~kJ} / \mathrm{mol}$, and TS-3 is less stable than $E-3$ and $Z-3$ by only 2.0 and $1.6 \mathrm{~kJ} / \mathrm{mol}$, respectively. At UMP2/6-31G*//UHF/6$31 \mathrm{G}^{*}$, the energy difference between $E-\mathbf{3}$ and $Z-\mathbf{3}$ is $0.2 \mathrm{~kJ} /$ mol, whereas TS-3 is less stable than $E-3$ and $Z-3$ by 3.0 and $2.8 \mathrm{~kJ} / \mathrm{mol}$, respectively. However, the high spin contamination of the resulting open shell singlets ($\hat{S}^{2}=3.68-3.69$) should be noted.

Kekulé versus Non-Kekulé Biphenalenylidenes. Triplet Z-3 ($\omega=77.0^{\circ}$) is a minimum, being higher in energy than singlets $E-3$ and $Z-3$ by 10.4 and $3.1 \mathrm{~kJ} / \mathrm{mol}$ (at UB3LYP/6-311G**). A similar picture was revealed in Clar Goblet ${ }^{47}$ ($4 \mathrm{H}, 13 \mathrm{H}$ diphenaleno[$2,1,9,8$-defg: $2^{\prime}, 1^{\prime}, 9^{\prime}, 8^{\prime}$-opqr] pentacene-4,13-diyl). However, Clar Goblet is a planar concealed non-Kekulé LPAH, ${ }^{48}$ in contrast to $\mathbf{3}$, which is obviously a Kekulé hydrocarbon. Non-Kekulé molecule is a fully conjugated

[^4]

Figure 3. DFT relative energies $\left(\Delta E_{\mathrm{Tot}}, \mathrm{kJ} / \mathrm{mol}\right)$ of the optimized conformations of diradical 12 (at UB3LYP/6-311G**; $\Delta E_{\text {Tot }}$ of twisted singlet $\mathbf{1 2}=0 ; \mathrm{S}$: singlet, T : triplet).

Chart 3

12

13
molecule, each of whose Kekulé structures contains at least two atoms that are not π-bonded. ${ }^{49-51} \mathrm{~A}$ distinction has been made between concealed and nonconcealed (obvious) non-Kekulé hydrocarbons. ${ }^{52-56}$ In a concealed non-Kekulé hydrocarbon, the numbers of starred and unstarred carbon vertexes are equal. ${ }^{54,55}$
In contrast to 3, its constitutional isomers $2,2^{\prime}$-biphenalenylidene (12) and 1, 2^{\prime}-biphenalenylidene (13) diradicals are concealed and nonconcealed non-Kekulé hydrocarbons, respectively. ${ }^{57}$ The AM1-ROHF CI calculations of diradicals 12 and 13 (Chart 3) have been reported: ${ }^{58}$ the triplet of nonconcealed $\mathbf{1 3}\left(\omega=50^{\circ}\right)$ was more stable than the singlet $\left(\omega=80^{\circ}\right)$ by $10.4 \mathrm{~kJ} / \mathrm{mol}$, whereas the singlet of concealed $12\left(\omega=44^{\circ}\right)$ was more stable than the triplet $\left(\omega=44^{\circ}\right)$ by $7.2 \mathrm{~kJ} / \mathrm{mol} .{ }^{58}$ Figure 3 shows the relative energies of the optimized conforma-

[^5]tions of 12. The DFT relative and total energies of $\mathbf{1 2}$ are given in Table S1 and Table S2 (see the Supporting Information). The DFT calculations showed that singlet $\mathbf{1 2}\left(\omega=41.1^{\circ}\right)$ is the global minimum and is lower in energy than triplet 12 (ω $=42.9^{\circ}$) by $1.3 \mathrm{~kJ} / \mathrm{mol}$ (at UB3LYP/6-311G**). Note that the POMOs 86α and 86β of singlet 12 as well as singlets $E-3$ and $Z-3$ are disjoint and localized on the upper and the lower phenalenylidene unit, respectively (Figure S1 and Figure S2). Orthogonally twisted singlet and triplet $\mathbf{1 2}$ are transition states for the enantiomerizations of the respective twisted conformations: $(M) \mathbf{- 1 2} \rightleftharpoons$ TS-12 (orthogonal) $\rightleftharpoons(P) \mathbf{- 1 2}$. They are located 6.2 and $6.6 \mathrm{~kJ} / \mathrm{mol}$ higher than the corresponding singlet and triplet twisted 12. Planar singlet and triplet 12 are also transition states for the enantiomerizations: $(P)-\mathbf{1 2} \rightleftharpoons$ TS- $\mathbf{1 2}$ (planar) \rightleftharpoons $(M) \mathbf{- 1 2}$. They are located 8.6 and $10.8 \mathrm{~kJ} / \mathrm{mol}$ higher than singlet and triplet 12, respectively. All of these transition states are achiral. The conformations of $\mathbf{1 2}$ are slightly more stable than the respective conformations of $\mathbf{3}$. Thus, singlet $\mathbf{1 2}$ is more stable than singlet $E-\mathbf{3}$ by $2.0 \mathrm{~kJ} / \mathrm{mol}$, and triplet $\mathbf{1 2}$ is lower in energy than triplet $Z-3$ by $11.0 \mathrm{~kJ} / \mathrm{mol}$ (at UB3LYP/6-311G**). Orthogonally twisted singlet TS-12 is more stable than orthogonally twisted singlet TS-3 by $6.0 \mathrm{~kJ} / \mathrm{mol}$. The increased stability of $\mathbf{1 2}$ can be explained by the different topologies of these $\mathrm{C}_{26} \mathrm{H}_{16}$ species (vide infra).

Table S4 gives the eigenvalues of the seven highest occupied ($80-86$), the seven highest vacant ($87-93$) π-MOs of 3 and 12, and the relevant MOs of the parent 7a. The degeneracy of the three highest doubly occupied and the three lowest vacant MOs of $D_{3 d-} 7$ a is lifted, lowering the MO symmetry to $C_{2 v}$. The HOMO-LUMO gaps in singlets $E-\mathbf{3}, Z-\mathbf{3}$, and $\mathbf{1 2}$ are 1.81, 1.84 , and 1.90 eV , respectively (at UB3LYP/6-31G*).

Table S5 and Figure S3 give the total atomic spin density at the carbon atoms of 7a, twisted conformations of $\mathbf{3}$, and $\mathbf{1 2}$ (at UB3LYP/6-311G**). In 7a, the calculated spin density is concentrated mainly at the peri $\mathrm{C}^{1}, \mathrm{C}^{3}, \mathrm{C},{ }^{4} \mathrm{C},{ }^{6} \mathrm{C},{ }^{7}$ and C^{9} positions (0.309). This pattern is maintained in $\mathbf{3}$ and 12. In singlets $E-\mathbf{3}, Z-\mathbf{3}, \mathrm{TS}-\mathbf{3}, \mathbf{1 2}$, and TS-12, the highest positive and negative values of spin density are located at the peri positions $\mathrm{C}^{1}, \mathrm{C}^{3}, \mathrm{C},{ }^{4} \mathrm{C},{ }^{6} \mathrm{C},{ }^{7}$ and C^{9} of one phenalenylidene unit and at $\mathrm{C}^{1^{\prime}}, \mathrm{C}^{3^{\prime}}, \mathrm{C}^{4^{\prime}}, \mathrm{C}^{6^{\prime}}, \mathrm{C},{ }^{7^{\prime}}$ and $\mathrm{C}^{9^{\prime}}$ of the other phenalenylidene unit, respectively. The positive spin density in triplets $Z-\mathbf{3}, 12$, and orthogonal TS-12 is delocalized mainly through all the peri positions. The spin density at the central $\mathrm{C}^{9 \mathrm{~b}}$ and $\mathrm{C}^{9 b^{\prime}}$ atoms are low for all the species. These results are consistent with the literature spin density distribution for 7a and $\mathbf{1 2} .{ }^{58}$ The absolute values of spin density in singlet $E-3\left(\omega=44.8^{\circ}\right)$ at the peri positions are considerably lower than the respective values in radical 7a ($0.226-0.201$ vs 0.309), except for the bridgehead C^{1} and $\mathrm{C}^{1^{\prime}}$ atoms (0.284 vs 0.309). Increasing the pure twist in singlets Z-3 (57.8 $)$ and TS-3 (87.5 ${ }^{\circ}$) and in triplet Z-3 (77.0 $\left.{ }^{\circ}\right)$ breaks the π-conjugation along the $\mathrm{C}^{1}-\mathrm{C}^{1^{\prime}}$ bond, thus eliminating the spin exchange between two halves of the molecules. In 12, the bridging $\mathrm{C}^{2}-\mathrm{C}^{2}$ bond lies in a nodal plane of the spin active POMOs 86α and 86β, and the spin density values are very close to those in $7 \mathbf{a}$. The calculated spin density pattern in the singlets of $\mathbf{3}$ and $\mathbf{1 2}$ suggests that each of the two electrons of opposite spin occupies one of the degenerate POMOs, which are disjoint and located on different phenalenylidene units. Obviously, the net spin of these singlets is zero. Due to the different topology of $\mathbf{3}$ and $\mathbf{1 2}$, the spin density is high at the

Figure 4. Three-dimensional representations of $Z-3,9$, and the transition state TS-9 for $\mathbf{Z - 3} \boldsymbol{\rightarrow} \mathbf{9}$ electrocyclization (singlets, at (U)B3LYP/6-311G**).
bridgehead C^{1} and $\mathrm{C}^{1^{\prime}}$ atoms of $\mathbf{3}$, whereas it is low at the bridgehead C^{2} and $\mathrm{C}^{2^{\prime}}$ atoms of $\mathbf{1 2}$, thus reducing spin exchange between two phenalenyl units of $\mathbf{1 2}$. This difference may account for the lower energy of $\mathbf{1 2}$ relative to $\mathbf{3}$.

Reductive Coupling of Phenalenone (6) to Peropyrene (5)-A Computational Approach. The transformation of 6 into $\mathbf{5}$ is described as a multistep process, including formation of the intermediate enes $E-\mathbf{3}$ and $Z-\mathbf{3}$ with subsequent electrocyclization followed by aromatization, leading to 5 (Scheme 1). The latter steps include the formation of heptacyclic hydrocarbon $\mathbf{9}$ as an intermediate. Table S6 and Table S 7 gives DFT relative and total energies of 9 . It may exist as $(R, R / S, S)$ and (R, S) diastereomers, with the two $\mathrm{C}_{s p 3}-\mathrm{H}$ hydrogens located on the same side or on the different sides of the plane of the aromatic skeleton of $\mathbf{9}$, respectively. Twisted 9 is the global minimum, with torsion angle around the former double bond 21.0°. Folded 9 is a local minimum, $48.9 \mathrm{~kJ} / \mathrm{mol}$ higher in energy than twisted 9 (at B3LYP/6-311G**). Folded TS-9 lies $59.6 \mathrm{~kJ} / \mathrm{mol}$ higher than twisted 9, and, according to IRC calculations, serves as a transition state for diastereomerization of folded 9 , with an energy barrier of $10.7 \mathrm{~kJ} / \mathrm{mol}$. Singlet twisted TS-9 $\left(\hat{S}^{2}=0.21\right)$ is a transition state for the hexatriene-cyclohexadiene electrocyclization of Z-3 to 9 .and lies $119.7 \mathrm{~kJ} / \mathrm{mol}$ higher in energy than twisted 9 (at UB3LYP/6-31G*). Figure 4 shows threedimensional representations of Z-3, TS-9, and 9 . Table $\mathrm{S8}$ gives selected geometrical parameters of the central $\mathrm{C}^{9}-\mathrm{C}^{9 \mathrm{a}}-\mathrm{C}^{1}-$ $\mathrm{C}^{1^{\prime}}-\mathrm{C}^{9 a^{\prime}}-\mathrm{C}^{9^{\prime}}$ ring in $Z-\mathbf{3}$, TS-9, and 9 . In the course of the $Z-\mathbf{3}$ \rightarrow TS-9 $\rightarrow 9$ electrocyclization, the nonbonding $\mathrm{C}^{9} \cdots \mathrm{C}^{9^{\prime}}$ distance shortens from 328.5 via 219.1 to 155.5 nm , and the $\mathrm{C}^{9 \mathrm{a}}-\mathrm{C}^{1}-$ $\mathrm{C}^{1^{\prime}}-\mathrm{C}^{9 \mathrm{a}^{\prime}}$ torsion angle changes from 59.9° via 37.5° to 21.0°. The length of the central ethylene bond hardly changes.

The energy barrier for the electrocyclization of $Z-\mathbf{3} \Delta E^{\ddagger}$ Tot is $94.8 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy of activation of the reaction $\Delta H^{\ddagger}{ }_{298}$ is $92.4 \mathrm{~kJ} / \mathrm{mol}$, whereas $\Delta G^{\ddagger}{ }_{298}$ is $98.3 \mathrm{~kJ} / \mathrm{mol}$ (at (U)B3LYP/ $\left.6-31 G^{*}\right)$. For comparison, the experimental ΔG^{\ddagger} for the $t Z t$ -1,3,5-hexatriene $(t Z t$-HT) \rightarrow 1,3-cyclohexadiene (CHD) electrocyclization is $123.8 \pm 1.3 \mathrm{~kJ} / \mathrm{mol},{ }^{59}$ whereas the calculated energy barrier for the $t \mathrm{Zt}$ - $\mathrm{HT} \rightarrow c \mathrm{Zc}$ - HT diastereomerization is $47.1 \mathrm{~kJ} / \mathrm{mol} .{ }^{60}$ Thus, the energy barrier for the reaction cZc -HT $\rightarrow \mathrm{CHD}$, which corresponds to the reaction $Z-\mathbf{3} \rightarrow \mathbf{9}$, is 76.7 $\mathrm{kJ} / \mathrm{mol}$. The higher value of the barrier for the latter electrocyclization could be ascribed to a more rigid structure of Z-3 and to the temporary loss of aromatic stabilization during the
(59) (a) Lewis, K. E.; Steiner, H. J. Chem. Soc. 1964, 3080-3092. (b) Marvell, E. N.; Caple, G.; Schatz, B. Tetrahedron Lett. 1965, 385-389.
(60) Henseler, D.; Rebentisch, R.; Hohlneicher, G. Int. J. Quantum Chem. 1999, 72, 295-305.
reaction. The central ring of TS-9 has a twisted chair conformation, and its geometry differs considerably from the geometry of the transition structures for the disrotatory and conrotatory ring closure of $t \mathrm{Zt}$-HT..$^{61-68}$ Table S 8 (see the Supporting Information) gives the calculated and experimental energy barriers and selected geometrical parameters in the hexatriene region of the reagents, the transition states and the product of the electrocyclizations of $\mathbf{3}$ and CT.

The $t \mathrm{Zt}$ - $\mathrm{CT} \rightarrow \mathrm{CHD}$ reaction occurs thermally in a disrotatory fashion, in accordance with the Woodward-Hoffmann rules. ${ }^{69-70}$ By contrast, the displacements of the atoms of the central aromatic ring of TS-9 along the normal mode of the imaginary frequency correspond to the conrotatory course of the thermal $Z-\mathbf{3} \rightarrow \mathbf{9}$ electrocyclization. The reaction, however, obeys the conservation of orbital symmetry rule: the symmetry of the two degenerate π-POMOs of $Z-\mathbf{3}$ implies an overlap between orbital envelops on opposite sides of the hexatriene $\mathrm{C}^{9}-\mathrm{C}^{9 \mathrm{a}}-\mathrm{C}^{1}-\mathrm{C}^{1^{\prime}}-$ $\mathrm{C}^{9 \mathrm{a}^{\prime}}-\mathrm{C}^{9^{\prime}}$ system to form the $\mathrm{C}^{9}-\mathrm{C}^{9^{\prime}} \sigma$-bond (antara fashion), thus requiring a conrotatory motion. This antara fashion closure is facilitated by a significant twist around the central $\mathrm{C}^{1}-\mathrm{C}^{1^{\prime}}$ bond: the torsion angle $\mathrm{C}^{9 a}-\mathrm{C}^{1}-\mathrm{C}^{1^{\prime}}-\mathrm{C}^{9 a^{\prime}}$ in $Z-3$ is 59.9° (at UB3LYP/6-311G**). The respective torsion angle in $c Z c$-CT is $0-10^{\circ}$ (Table S 8).

Conclusions

$1,1^{\prime}$-Biphenalenylidene (3), a BAE with a topology different from that of the conventional BAEs (1), is found to have a diradical structure. Despite this, singlets $E-\mathbf{3}$ and $Z-3$ are more stable than BAE 2 by 21.9 and $14.1 \mathrm{~kJ} / \mathrm{mol}$, respectively (at (U)B3LYP/6-31G*). On the other hand, 3, a Kekulé hydrocarbon, is found to be less stable than the non-Kekulé hydrocarbon 12. Singlet $\mathbf{1 2}$ is more stable than singlet $E-\mathbf{3}$ by $2.0 \mathrm{~kJ} / \mathrm{mol}$, and triplet $\mathbf{1 2}$ is lower in energy than triplet $Z-\mathbf{3}$ by $11.0 \mathrm{~kJ} / \mathrm{mol}$ (at UB3LYP/6-311G**). BAE 3 readily undergoes E, Z-diastereomerization: $\Delta E^{\ddagger}{ }_{\text {Tot }}=10.2 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta G^{\ddagger}{ }_{298}=10.6 \mathrm{~kJ} /$ mol (at UB3LYP/6-311G**). TS-3 is lower in energy than TS-2 by $101.3 \mathrm{~kJ} / \mathrm{mol}$, due to the aromatic stabilization of its phenalenyl units. The electrocyclization of Z-3 to 9 has the energy barriers ΔE^{\ddagger} Tot $=94.8 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta G_{298}^{\ddagger}=98.3 \mathrm{~kJ} /$ mol, and occurs under modest heating $\left(80^{\circ} \mathrm{C}\right)$. The experimental and computational results do not, in principle, rule out the possibility of synthesizing kinetically stable derivatives of $E-\mathbf{3}$, Z-3, and 12.

Experimental Section

General. Melting points are uncorrected. All NMR spectra were recorded with Brüker DRX 400. UV-vis spectra were recorder with Kontron UVIKON 860. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400.1 MHz

[^6]using CDCl_{3} as solvent and as internal standard $\left(\delta\left(\mathrm{CHCl}_{3}\right)=7.26 \mathrm{ppm}\right)$. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100.6 MHz using CDCl_{3} as solvent and as internal standard $\left(\delta\left(\mathrm{CHCl}_{3}\right)=77.01 \mathrm{ppm}\right)$. Complete assignments were made through 2-dimensional correlation spectroscopy (DQF-COSY, NOESY, and HSQC). The literature procedure ${ }^{37,38}$ for converting aromatic ketones to thiones was slightly modified to afford the maximal yields of the product. The reactions were carried out under Ar ; benzene was dried over sodium and freshly distilled.

Reaction of Phenalenone (6) with Lawesson Reagent in Benzene. To a magnetically stirred boiling solution of $6(0.509 \mathrm{~g}, 2.82 \mathrm{mmol})$ in benzene (35 mL), Lawesson reagent ($875 \mathrm{mg}, 2.16 \mathrm{mmol}$) was added. The color of the mixture changed rapidly from yellow via orange to dark brown. The mixture was refluxed for 2.5 h . Column chromatography of the reaction mixture $\left(\mathrm{SiO}_{2}\right.$ dried, diethyl ether/petroleum ether $40-60,1: 1$) afforded 377 mg of a yellow solid containing ca. 47% of 5. The crude product was purified by sublimation $\left(250{ }^{\circ} \mathrm{C}, 0.4\right.$ mmHg): 19.6 mg of crude $\mathbf{5}$ yielded $10.6 \mathrm{mg}(54 \%)$ of pure $\mathbf{5}$ as yellow crystals, mp 380-385 ${ }^{\circ} \mathrm{C}$ decomp. (lit. $.^{21} \mathrm{mp} 374-375{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR: $\delta=9.27\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{H},{ }^{5} \mathrm{H},{ }^{6} \mathrm{H},{ }^{12} \mathrm{H}^{13}\right), 8.44\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, \mathrm{H},{ }^{4}\right.$ $\left.\mathrm{H},{ }^{7} \mathrm{H},{ }^{11} \mathrm{H}^{14}\right), 8.38\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, \mathrm{H}^{1}, \mathrm{H}^{3}, \mathrm{H},{ }^{8} \mathrm{H}^{10}\right), 8.18(\mathrm{t}, J=7.4$ $\left.\mathrm{Hz}, J=7.6 \mathrm{~Hz}, \mathrm{H}^{2}, \mathrm{H}^{9}\right) ;{ }^{13} \mathrm{C}$ NMR: $\delta=130.95\left(\mathrm{C}^{3 \mathrm{a}}, \mathrm{C},{ }^{7 \mathrm{a}} \mathrm{C},{ }^{10 \mathrm{a}} \mathrm{C}^{14 \mathrm{a}}\right)$, $127.66\left(\mathrm{C},{ }^{4} \mathrm{C},{ }^{7} \mathrm{C},{ }^{11} \mathrm{C}^{14}\right), 126.01\left(\mathrm{C}^{2}, \mathrm{C}^{9}\right), 125.15\left(\mathrm{C},{ }^{5 \mathrm{a}} \mathrm{C},{ }^{5 \mathrm{~b}} \mathrm{C},{ }^{12 \mathrm{a}} \mathrm{C}^{12 \mathrm{~b}}\right)$, $125.19\left(\mathrm{C}^{1}, \mathrm{C}^{3}, \mathrm{C},{ }^{8} \mathrm{C}^{10}\right), 125.20\left(\mathrm{C},{ }^{10 \mathrm{~b}} \mathrm{C}^{14 \mathrm{~b}}\right), 122.95\left(\mathrm{C},{ }^{12 \mathrm{~b}} \mathrm{C}^{14 \mathrm{c}}\right), 122.88$ $\left(\mathrm{C},{ }^{5} \mathrm{C},{ }^{6} \mathrm{C},{ }^{12} \mathrm{C}^{13}\right)$ (cf. ref 30,71); UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{~nm}\right): 436,411,387$, $366,323,310$ (cf. ref 21, 25). An analogous reaction conducted at 25 ${ }^{\circ} \mathrm{C}$ for 24 h afforded only the starting ketone 6.

Reaction of 6 with Phosphorus Pentasulfide in Benzene. To a magnetically stirred boiling solution of $\mathbf{6}(2.00 \mathrm{~g}, 0.111 \mathrm{~mol})$ in benzene $(100 \mathrm{~mL}), \mathrm{P}_{2} \mathrm{~S}_{5}(4.93 \mathrm{~g}, 0.222 \mathrm{~mol})$ was added. The color of the mixture changed from yellow via orange to dark brown. The mixture was refluxed for 10 h . The reaction mixture was cooled and filtered, the residue was extracted seven times with cold chloroform. The joint extracts were evaporated in a vacuum. Recrystallization of the solid residue from toluene yielded $983 \mathrm{mg}(54 \%) \mathrm{mg}$ of 5 as a dark brown powder, mp $376-380{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of the product were identical with those of the product of the reaction of 6 with Lawesson reagent. The UV-vis spectrum was recorded for the orange solution before and after its evaporation and dissolving again (the green solution). The orange solution: UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{~nm}\right): 656$ (very weak), 470, 444, 418, 394, 375, 356, 340, 328, 315. The green solution: UV-vis $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{~nm}\right)$: 647, 465, 438, 409, 382, 354.

Reaction of 6 with Phosphorus Pentasulfide in Chloroform-d. To a magnetically stirred boiling solution of $6(50 \mathrm{mg}, 0.277 \mathrm{mmol})$ in chloroform- $d(15 \mathrm{~mL}), \mathrm{P}_{2} \mathrm{~S}_{5}(185 \mathrm{mg}, 0.832 \mathrm{mmol})$ was added. The mixture was refluxed for 1 h . The samples of the reaction mixture were taken 5,30 , and 60 min after the beginning of the reaction, filtered, and ${ }^{1} \mathrm{H}$ NMR spectra of resulting dark orange solution were recorded immediately and after a week. The following signals were observed:
(1) $9.24(\mathrm{~d}, 2 \mathrm{H}), 8.39(\mathrm{~d}, 2 \mathrm{H}), 8.36(\mathrm{~d}, 2 \mathrm{H}), 8.15(\mathrm{t}, 1 \mathrm{H})$-assigned to 5;
(2) $8.66(\mathrm{~d}, 1 \mathrm{H}), 8.23(\mathrm{~d}, 1 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}), 7.76-7.84(\mathrm{~m}, 3 \mathrm{H})$, $7.62(\mathrm{t}, 1 \mathrm{H}), 6.78(\mathrm{~d}, 1 \mathrm{H})$-assigned to 6.
(3) 8.87 (br. s., 1H), 8.26 (br. s., 1H), 8.04 (br. s., 1H), 7.87 (br. s, $1 \mathrm{H}), 7.68(\mathrm{tr}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H})$-assigned to 10 (Compound I).
(4) $7.82-7.70(\mathrm{~m}), 7.54-7.49(\mathrm{~m}), 7.38-7.33(\mathrm{~m}), 6.99(\mathrm{~d}, 1 \mathrm{H})$, 6.59 (br. d, 1H), 6.04 (dd, 1H), 4.07 (br. s, 2H)-Compound II.

Swift decomposition of Compound I and low concentration of the samples made it impossible to record ${ }^{13} \mathrm{C}$ NMR spectra.

Computational Methods. The ab initio and DFT calculations were performed using the Gaussian 98^{72} package. The RHF Hamiltonian was used for the closed shell systems, whereas RHF and/or UHF Hamiltonian were used to treat the twisted conformations of $\mathbf{3}$ and openshell systems. Becke's three parameter hybrid density functional

[^7]B3LYP, ${ }^{73}$ with the nonlocal correlation functional of Lee, Yang, and Parr ${ }^{74-76}$ was used. The basis sets STO-3G, $6-31 G^{*}$, and $6-311 G^{* *}$ were employed. MP2 single point calculations were carried out at the HF/6-31G* optimized geometries. All structures were fully optimized using symmetry constrains as indicated. Vibrational frequencies were calculated to verify minima, transition states or higher order saddle points (at B3LYP/STO-3G or B3LYP/6-31G*). Nonscaled thermal energy corrections calculated at (U)B3LYP/6-31G* were used. Intrinsic reaction coordinates (IRC) for reactions and for diastereomerization
(72) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
(73) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(74) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
(75) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206.
(76) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
processes were calculated for selected transition states. The dummy atoms and symmetry constrains were removed, and two IRC calculations for each transition state were run to follow the normal mode with imaginary frequency in both directions.

Acknowledgment. The authors thank Professor Weston T. Borden (Department of Chemistry, University of Washington, Seattle, WA), Professor L. Radom (Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia) and Mr. P. U. Biedermann (Institut für Organische Chemie, Universität Stuttgart, Germany) for fruitful discussions and helpful comments.

Supporting Information Available: The ab initio and DFT relative and total energies and the optimized geometries of $\mathbf{3}$, $\mathbf{9}$, and 12, selected geometrical parameters of 3, 9, HT, and CHD, selected MOs of $\mathbf{3}, \mathbf{7 a}$, and $\mathbf{1 2}$, total atomic spin densities in $\mathbf{3}, 7 \mathbf{a}$, and 12. This material is available free of charge via the Internet at http://pubs.acs.org.

JA035968K

[^0]: (1) Shoham, G.; Cohen, S.; Suissa, R. M.; Agranat, I. In Molecular Structure, Chemical Reactivity, and Biological Activity; Stezowski, J. J., Huang, J.L., Shao, M.-C., Eds.; Oxford University Press: Oxford, 1988; pp 290312.
 (2) Biedermann, P. U.; Stezowski, J. J.; Agranat, I. Eur. J. Org. Chem. 2001, 15-34.
 (3) Feringa, B. L. Acc. Chem. Res. 2001, 34, 504-513.
 (4) Feringa, B. L.; van Delden, R. A.; ter Wiel, M. K. J. In Molecular Switches: Feringa, B. L., Ed.; Wiley: New York, 2001; pp 123-163.
 (5) Pogodin, S.; Biedermann, P. U.; Agranat, I. In Recent Advances in the Chemistry of Fullerenes and Related Materials; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Pennington NJ, 1998; vol. 6, pp 1100-1116.
 (6) Rabideau, P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235-242.
 (7) Kuo, C.-H.; Tsau, M.-H.; Weng, D. T.-C.; Lee, G. H.; Peng, S.-M.; Luh, T.-Y.; Biedermann, P. U.; Agranat, I. J. Org. Chem. 1995, 60, 73807381.
 (8) Mehta, G.; Rao, H. S. P. Tetrahedron 1998, 54, 13 325-13 370.
 (9) Bronstein, H. E.; Choi, N.; Scott, L. T. J. Am. Chem. Soc. 2002, 124, 88708875.
 (10) Hagen, S.; Nuechter, U.; Nuechter, M.; Zimmermann, G. Polycyclic Aromat. Compd. 1995, 4, 209-217.
 (11) Scott, L. T.; Bronstein, H. E.; Preda, D. V.; Ansems, R. B. M.; Bratcher, M. S.; Hagen, S. Pure Appl. Chem. 1999, 71, 209-219.
 10.1021/ja035968k CCC: $\$ 25.00$ © 2003 American Chemical Society

[^1]: (18) Fetzer, J. C.; Kershaw, J. R. Fuel 1995, 74, 1533-1536.
 (19) Fetzer, J. C.; Biggs, W. R.; Jinno, K. Chromatographia 1986, 21, 439442.
 (20) Wornat, M. J.; Ledesma, E. B.; Marsh, N. D. Fuel 2001, 80, 1711-1726.
 (21) Clar, E. Ber. Dtsch. Chem. Ges. 1943, 76, 458-466.
 (22) Clar, E. Polycyclic Hydrocarbons; Academic Press: New York, 1964; Vol 1, p 242-245.
 (23) Gerson, F. Helv. Chim. Acta 1966, 49, 1463-1467.
 (24) Takano, Y.; Taniguchi, T.; Isobe, H.; Kubo, T.; Morita, Y.; Yamamoto, K.; Nakasuji, K.; Takui, T.; Yamaguchi, K. J. Am. Chem. Soc. 2002, 124, $11122-11130$.
 (25) Pettit, R. J. Am. Chem. Soc. 1960, 82, 1972-1975.
 (26) Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; Wiley: New York, 1994.

[^2]: (37) Pedersen, B. S.; Scheibye, S.; Nilsson, N. H.; Lawesson, S.-O. Bull. Soc. Chem. Belg. 1978, 87, 223-228.
 (38) Cava, M. P.; Levinson, M. I. Tetrahedron 1985, 41, 5061-5087.
 (39) Pogodin, S.; Agranat, I. Large Polycyclic Aromatic Hydrocarbons by PeriPeri Reductive Coupling of Polycyclic Aromatic Ketones and Thioketones. Abstracts, The 9th International Symposium on Novel Aromatic Compounds, Wanchai, Hong Kong, August 2-7, 1998, Poster 15.

[^3]: (40) De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101, 1451-1464.
 (41) Biedermann, P. U.; Stezowski, J. J.; Agranat, I. Chem. Commun. 2001, 954-955.
 (42) Pogodin, S.; Agranat, I. J. Org. Chem. 2002, 67, 265-270.
 (43) Scott, A. P.; Agranat, I.; Biedermann, P. U.; Riggs, N. V.; Radom, L. J. Org. Chem. 1997, 62, 2026-2038.
 (44) Zefirov, Yu. V. Crystallogr. Rep. 1997, 42, 111-116.
 (45) Borden, W. T. In Diradicals; Borden, W. T., Ed.; Wiley-Interscience: New York, 1982; pp 1-72.
 (46) Borden, W. T.; Davidson, E. R. Acc. Chem. Res. 1981, 14, 69-76.

[^4]: (47) Clar, E. The Aromatic Sextet; Wiley: London, 1972; pp 118-119.
 (48) Pogodin, S.; Agranat. I. J. Org. Chem. 2003, 68, 2720-2727.

[^5]: (49) Longuet-Higgins, H. C. J. Chem. Phys. 1950, 18, 265-274.
 (50) Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry; McGraw-Hill Book Company: New York, 1969; pp 232-236.
 (51) Borden, W. T.; Iwamura, H.; Berson, J. A. Acc. Chem. Res. 1994, 27, 109116.
 (52) (a) Cyvin, S. J.; Gutman, I. Kekulé Structures in Benzenoid Hydrocarbons (Lecture Notes in Chemistry 46); Springer-Verlag: Berlin, 1988; pp 1823 and 51-58. (b) Cyvin, B. N.; Brunvoll, J.; Cyvin, S. J. In Top. Curr. Chem. 162, Advances in the Theory of Benzenoid Hydrocarbons II; Gutman, I., Ed.; Springer-Verlag: Berlin 1992; pp 140-143.
 (53) Gutman, I. Croat. Chem. Acta 1974, 46, 209-215.
 (54) Balaban, A. T. Pure Appl. Chem. 1982, 54, 1075-1096. The author's designators "D-diradicals" and "S-diradicals" correspond to nonconcealed and concealed non-Kekulé hydrocarbons, respectively.
 (55) Cyvin, S. J.; Gutman, I. J. Mol. Struct. (THEOCHEM) 1987, 150, 157169.
 (56) Cyvin, S. J.; Balaban, A. T. Struct. Chem. 1991, 2, 485-488.
 (57) Dias, J. R. Phys. Chem. Chem. Phys. 1999, 1, 5081-5086.
 (58) Baumgarten, M.; Karabunarliev, S. Chem. Phys. 1999, 244, 35-47.

[^6]: (61) Evanseck, J. D.; Thomas IV, B. E.; Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1995, 60, 7134-7141.
 (62) Baldwin, J. E.; Reddy, V. P.; Hess, B. A., Jr.; Shaad, L. J. J. Am. Chem. Soc. 1988, 110, 8554-8555.
 (63) Komornicki, A.; McIver, J. W., Jr. J. Am. Chem. Soc. 1974, 96, 57985800.
 (64) Pichko, V. A.; Simkin, B. Ya.; Minkin, V. I. J. Mol. Struct. (THEOCHEM) 1989, 188, 129-140.
 (65) Pichko, V. A.; Simkin, B. Ya.; Minkin, V. I. J. Org. Chem. 1992, 57, 70877092.
 (66) Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem., Int. Ed. Engl. 1992, 31, 682-708.
 (67) Warshel, A.; Karplus, M. J. Am. Chem. Soc. 1972, 94, 5612-5625.
 (68) Yoshida, H.; Furukawa, Y.; Tasumi, M. J. Mol. Struct. 1989, 194, $279-$ 299.
 (69) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie: Weinheim, 1971.
 (70) Robert Burns Woodward: Architect and Artist in the World of Molecules; Benfey, O. T., Morris, P. J. T., Eds.; Chemical Heritage Foundation: Philadelphia, 2001; pp 310-409.

[^7]: (71) Ueda, T.; Iwashima, S.; Aoki, J.; Takekawa, M. Magn. Reson. Chem. 1995, 33, 95-103.

